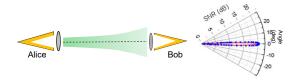
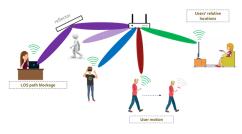
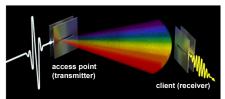
Electrically reconfigurable random THz wavefronts for rapid localization sensing



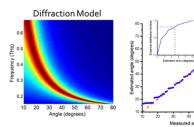


Burak Bilgin, Jy-Chin Liao, Hou-Tong Chen, Chun-Chieh Chang, Sadhvikas Addamane, Michael Lilly, Daniel M. Mittleman, Edward W. Knightly

THz links are directional: both a blessing and a curse

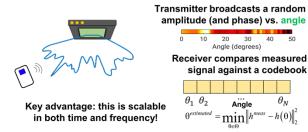


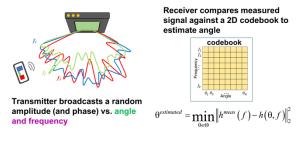
Challenges with THz links: mobility, blockage, scalability



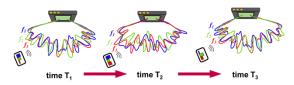
A crucial aspect of making all this work: rapid sensing of receiver location

One idea: broadband excitation of a leaky-wave antenna (LWA)

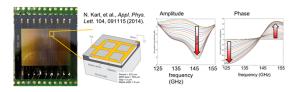

"Single-shot link discovery for terahertz wireless networks,"
Y. Ghasempour, et al., Nature Communications, 11, 2017 (2020).


Mean estimation error: ~2°

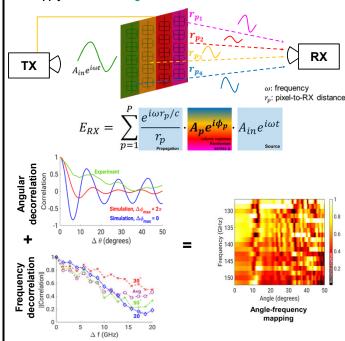
This is limited by wavefront angular correlation.


Step 1: Encoding location using random wavefronts

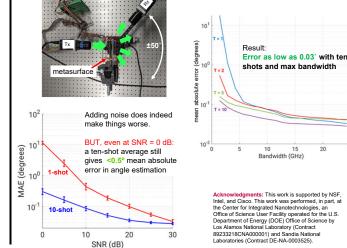
Step 2: Scaling in frequency: broadband random waves



Step 3: Scaling in time: repeated broadband random waves


How to implement this?

A multi-pixel reconfigurable metasurface



Generating random wavefronts

We apply a random voltage to each column of the metasurface

Experimental Evaluation

